Scope

On 13 July, the Graduate School Chemistry (GS_Chem) is organizing a workshop on the theme: Practical applications of Machine Learning in chemistry: perspectives and pitfalls. The objective is to establish the state of the art of the use of machine learning in the main fields of chemistry (molecular chemistry, theoretical chemistry, atmospheric chemistry, material and nanomaterials).

Program

8h45-9h15        Welcoming coffee, distribution of badges

9h15-9h30         Data Intelligence Institute of Paris and Graduate School Chemistry presentation 

9h30-10h00     ● Data-driven high-throughput experimentation using combinatorial material science methods                                   and machine learning

                           Lars Banko, Ruhr-Universität Bochum

10h00-10h30    ● Solving the inverse problem in atmospheric remote sensing with machine learning techniques

                          Lieven Clarisse,  Université libre de Bruxelles (ULB)

10h30-11h00     Coffee break

11h00-11h30     Optimization of Lithium Ion Battery Manufacturing Processes by Combining Physics-Based                                    and Machine Learning Modeling

                           Alejandro A. Franco, Université de Picardie Jules Verne

11h30-12h00    ● Emulating the complexity of secondary organic aerosol formation with machine learning                                          approaches

                          Camille Mouchel-Vallon, Laboratoire d'Aérologie, Université de Toulouse, CNRS.

12h00-12h30    ● Digitalization of Organic Chemistry: Autonomous Flow Reactors Associating In-line/Online                                    Analyses and Feedback Algorithms

 

                           François-Xavier Felpin, Nantes Université

12h30-14h00     Lunch

14h00-14h30    ● Advancing transmission electron microscopy with machine learning : towards high-throughput                                data acquisition and real-time structural analysis down to the atomic scale

                           Jaysen NELAYAH, Materials and Quantum Phenomena laboratory (UMR 7162) , Université                                              de Paris Cité

14h30-15h00    ● Can a molecular Boltzmann generator train itself without data?

                           Jérome Henin, Institut de Biologie Physico-Chimique, Paris

15h00-15h30     Coffee break

15h30-16h00    ●    Data-driven chemical understanding

                           Janine George,  Federal Institute for Materials Research and Testing (Department Materials                                           Chemistry) and FSU Jena (Institute of Condensed Matter Theory and Optics)

16h00-16h30    ●   Machine learning for the prediction of molecular properties

                           Benoît Gaüzère Maître de conférences en informatique chez INSA Rouen Normandie 

LOCATION

Amphithéâtre Buffon

Bâtiment Buffon: 17 rue helene brion 75013 Paris

Métro Ligne 14, Bibliothèque François Mittérand

Online user: 2 Privacy
Loading...